Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.

نویسندگان

  • Alejandro M Briones
  • Jamie S Ervin
  • Shawn A Putnam
  • Larry W Byrd
  • Lois Gschwender
چکیده

A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line dynamics is dependent on the wetting parameter (K(W)). Both numerical and experimental results suggest that at 4.5 < We < 11.0 the short-time dynamics of microdroplet impingement corresponds to a transition regime between two different spreading regimes (i.e., for We < or = 4.5, impingement is followed by spreading, then contact line pinning and then inertial oscillations, and for We > or = 11.0, impingement is followed by spreading, then recoiling, then contact line pinning and then inertial oscillations). Droplet evaporation can be satisfactorily modeled using the Schrage model, since it predicts both well-defined transient and quasi-steady evaporation stages. The model compares well with measurements in terms of flatness ratio (H/H(E)) before depinning occurs. Toroidal vortices are formed on the droplet surface in the gaseous phase due to buoyancy-induced Rayleigh-Taylor instability that enhances convection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions.

Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersio...

متن کامل

Organization of microbeads in Leidenfrost drops.

We investigated the organization of micrometric hydrophilic beads (glass or basalt) immersed in Leidenfrost drops. Starting from a large volume of water compared to the volume of the beads, while the liquid evaporates, we observed that the grains are eventually trapped at the interface of the droplet and accumulate. At a moment, the grains entirely cover the droplet. We measured the surface are...

متن کامل

Evaporation of inclined water droplets

When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find...

متن کامل

Comparative Analysis of a Single Fuel Droplet Evaporation

In this research, the results of comparative analysis of a single fuel droplet evaporation models are presented. Three well-known evaporation models including Spalding, Borman-Johnson and Abramzon-Sirignano models are analyzed using Computational Fluid Dynamic (CFD). The original Spalding model is extended to consider the effects of the Stefan flow, unsteady vaporization, and variable propertie...

متن کامل

An Experimental Investigation on Unsteady Heat Transfer and Transient Icing Process upon Impingement of Water Droplets

This study presents an experimental investigation of a single droplet with different impingement velocity impinge on the hydrophilic and superhydrophobic substrates under normal and icing temperature by using high-speed image and infrared image techniques. The aim is to better understand the unsteady heat transfer and transient icing process of the aircraft icing caused by the supercooled large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 16  شماره 

صفحات  -

تاریخ انتشار 2010